evalml.pipelines.components.RandomForestRegressor¶
-
class
evalml.pipelines.components.
RandomForestRegressor
(n_estimators=10, max_depth=None, n_jobs=-1, random_state=0)[source]¶ Random Forest Regressor
-
name
= 'Random Forest Regressor'¶
-
model_family
= 'random_forest'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>]¶
-
hyperparameter_ranges
= {'max_depth': Integer(low=1, high=32, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}¶
Instance attributes
feature_importances
Returns feature importances.
Methods:
Initialize self.
Describe a component and its parameters
Fits component to data
Make predictions using selected features.
Make probability estimates for labels.
-