evalml.pipelines.components.RandomForestClassifier¶
-
class
evalml.pipelines.components.
RandomForestClassifier
(n_estimators=10, max_depth=None, n_jobs=-1, random_state=0)[source]¶ Random Forest Classifier
-
name
= 'Random Forest Classifier'¶
-
model_family
= 'random_forest'¶
-
supported_problem_types
= [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>]¶
-
hyperparameter_ranges
= {'max_depth': Integer(low=1, high=32, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}¶
Instance attributes
feature_importances
Returns feature importances.
Methods:
Initialize self.
Describe a component and its parameters
Fits component to data
Make predictions using selected features.
Make probability estimates for labels.
-