evalml.pipelines.TimeSeriesBaselineRegressionPipeline¶
-
class
evalml.pipelines.TimeSeriesBaselineRegressionPipeline(parameters, random_state=None, random_seed=0)[source]¶ Baseline Pipeline for time series regression problems.
-
name= 'Time Series Baseline Regression Pipeline'¶
-
custom_name= None¶
-
summary= 'Time Series Baseline Estimator'¶
-
component_graph= ['Time Series Baseline Estimator']¶
-
problem_type= 'time series regression'¶
-
model_family= 'baseline'¶
-
hyperparameters= {'Time Series Baseline Estimator': {}}¶
-
custom_hyperparameters= None¶
-
default_parameters= {'Time Series Baseline Estimator': {'gap': 1}}¶
Instance attributes
feature_importanceReturn importance associated with each feature.
linearized_component_graphparametersReturns parameter dictionary for this pipeline
Methods:
Machine learning pipeline for time series regression problems made out of transformers and a classifier.
Determine whether the threshold of a binary classification pipeline can be tuned.
Constructs a new pipeline with the same components, parameters, and random state.
Transforms the data by applying all pre-processing components.
Outputs pipeline details including component parameters
Fit a time series regression pipeline.
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives.
-
Class Inheritance¶
