evalml.pipelines.components.RFRegressorSelectFromModel¶
-
class
evalml.pipelines.components.
RFRegressorSelectFromModel
(number_features=None, n_estimators=10, max_depth=None, percent_features=0.5, threshold=- inf, n_jobs=- 1, random_state=None, random_seed=0, **kwargs)[source]¶ Selects top features based on importance weights using a Random Forest regressor.
-
name
= 'RF Regressor Select From Model'¶
-
model_family
= 'none'¶
-
hyperparameter_ranges
= {'percent_features': Real(low=0.01, high=1, prior='uniform', transform='identity'), 'threshold': ['mean', -inf]}¶
-
default_parameters
= {'max_depth': None, 'n_estimators': 10, 'n_jobs': -1, 'number_features': None, 'percent_features': 0.5, 'threshold': -inf}¶
Instance attributes
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Fits on X and transforms X
Get names of selected features.
Loads component at file path
Saves component at file path
Transforms input data by selecting features.
-