evalml.pipelines.components.LinearRegressor¶
-
class
evalml.pipelines.components.LinearRegressor(fit_intercept=True, normalize=False, n_jobs=- 1, random_state=None, random_seed=0, **kwargs)[source]¶ Linear Regressor.
-
name= 'Linear Regressor'¶
-
model_family= 'linear_model'¶
-
supported_problem_types= [<ProblemTypes.REGRESSION: 'regression'>, <ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges= {'fit_intercept': [True, False], 'normalize': [True, False]}¶
-
default_parameters= {'fit_intercept': True, 'n_jobs': -1, 'normalize': False}¶
-
predict_uses_y= False¶
Instance attributes
feature_importanceReturn an attribute of instance, which is of type owner.
needs_fittingparametersReturns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-
Class Inheritance¶
