evalml.pipelines.components.DecisionTreeRegressor¶
-
class
evalml.pipelines.components.
DecisionTreeRegressor
(criterion='mse', max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, random_seed=0, **kwargs)[source]¶ Decision Tree Regressor.
-
name
= 'Decision Tree Regressor'¶
-
model_family
= 'decision_tree'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>, <ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges
= {'criterion': ['mse', 'friedman_mse', 'mae'], 'max_depth': Integer(low=4, high=10, prior='uniform', transform='identity'), 'max_features': ['auto', 'sqrt', 'log2']}¶
-
default_parameters
= {'criterion': 'mse', 'max_depth': 6, 'max_features': 'auto', 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Returns importance associated with each feature.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-