evalml.pipelines.components.ARIMARegressor¶
-
class
evalml.pipelines.components.
ARIMARegressor
(date_index=None, trend='n', p=1, d=0, q=0, random_seed=0, **kwargs)[source]¶ Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the degree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima_model.ARIMA.html
-
name
= 'ARIMA Regressor'¶
-
model_family
= 'ARIMA'¶
-
supported_problem_types
= [<ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges
= {'d': Integer(low=0, high=10, prior='uniform', transform='identity'), 'p': Integer(low=0, high=10, prior='uniform', transform='identity'), 'q': Integer(low=0, high=10, prior='uniform', transform='identity')}¶
-
default_parameters
= {'d': 0, 'order': (1, 0, 0), 'p': 1, 'q': 0, 'trend': 'n'}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
- param date_column
Specifies the name of the column in X that provides the datetime objects. Defaults to None.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-