evalml.pipelines.components.SVMClassifier¶
-
class
evalml.pipelines.components.
SVMClassifier
(C=1.0, kernel='rbf', gamma='scale', probability=True, random_seed=0, **kwargs)[source]¶ Support Vector Machine Classifier.
-
name
= 'SVM Classifier'¶
-
model_family
= 'svm'¶
-
supported_problem_types
= [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>, <ProblemTypes.TIME_SERIES_BINARY: 'time series binary'>, <ProblemTypes.TIME_SERIES_MULTICLASS: 'time series multiclass'>]¶
-
hyperparameter_ranges
= {'C': Real(low=0, high=10, prior='uniform', transform='identity'), 'gamma': ['scale', 'auto'], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed']}¶
-
default_parameters
= {'C': 1.0, 'gamma': 'scale', 'kernel': 'rbf', 'probability': True}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Feature importance only works with linear kernels.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-