evalml.preprocessing.split_data¶
-
evalml.preprocessing.
split_data
(X, y, problem_type, problem_configuration=None, test_size=0.2, random_seed=0)[source]¶ Splits data into train and test sets.
- Parameters
X (ww.DataTable, pd.DataFrame or np.ndarray) – data of shape [n_samples, n_features]
y (ww.DataColumn, pd.Series, or np.ndarray) – target data of length [n_samples]
problem_type (str or ProblemTypes) – type of supervised learning problem. see evalml.problem_types.problemtype.all_problem_types for a full list.
problem_configuration (dict) – Additional parameters needed to configure the search. For example, in time series problems, values should be passed in for the date_index, gap, and max_delay variables.
test_size (float) – What percentage of data points should be included in the test set. Defaults to 0.2 (20%).
random_seed (int) – Seed for the random number generator. Defaults to 0.
- Returns
Feature and target data each split into train and test sets
- Return type
ww.DataTable, ww.DataTable, ww.DataColumn, ww.DataColumn