evalml.pipelines.components.XGBoostRegressor¶
-
class
evalml.pipelines.components.
XGBoostRegressor
(eta=0.1, max_depth=6, min_child_weight=1, n_estimators=100, random_seed=0, **kwargs)[source]¶ XGBoost Regressor.
-
name
= 'XGBoost Regressor'¶
-
model_family
= 'xgboost'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>, <ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges
= {'eta': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=1, high=20, prior='uniform', transform='identity'), 'min_child_weight': Real(low=1, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=1, high=1000, prior='uniform', transform='identity')}¶
-
default_parameters
= {'eta': 0.1, 'max_depth': 6, 'min_child_weight': 1, 'n_estimators': 100}¶
-
predict_uses_y
= False¶
Instance attributes
SEED_MAX
SEED_MIN
feature_importance
Return an attribute of instance, which is of type owner.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-