evalml.pipelines.components.CatBoostRegressor.__init__¶
-
CatBoostRegressor.
__init__
(n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=False, allow_writing_files=False, random_seed=0, n_jobs=- 1, **kwargs)[source]¶ CatBoost Regressor.
- Parameters
n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting rounds. Defaults to 100.
eta (float) – Learning rate. Defaults to 0.1.
max_depth (int) – Maximum tree depth for base learners. Defaults to 6.
bootstrap_type (string) – Defines the method for sampling the weights of objects. Defaults to None.
silent (bool) – Whether to emit logging while training. Default to False.
allow_writing_files (bool) – Whether to allow writing of analytical and snapshot files during training. Defaults to False.
random_seed (int) – Seed for the random number generator. Defaults to 0.
n_jobs (int) – Number of parallel threads used to run CatBoost. This will be passed to CatBoost as the thread_count parameter. Defaults to -1.