logo
  • Install
  • Start
  • Tutorials
  • User Guide
  • API Reference
  • Release Notes
  • evalml.demos.load_fraud
  • evalml.demos.load_wine
  • evalml.demos.load_breast_cancer
  • evalml.demos.load_diabetes
  • evalml.demos.load_churn
  • evalml.preprocessing.load_data
  • evalml.preprocessing.drop_nan_target_rows
  • evalml.preprocessing.target_distribution
  • evalml.preprocessing.number_of_features
  • evalml.preprocessing.split_data
  • evalml.preprocessing.BalancedClassificationDataTVSplit
  • evalml.preprocessing.BalancedClassificationDataCVSplit
  • evalml.exceptions.MethodPropertyNotFoundError
  • evalml.exceptions.PipelineNotFoundError
  • evalml.exceptions.ObjectiveNotFoundError
  • evalml.exceptions.IllFormattedClassNameError
  • evalml.exceptions.MissingComponentError
  • evalml.exceptions.ComponentNotYetFittedError
  • evalml.exceptions.PipelineNotYetFittedError
  • evalml.exceptions.AutoMLSearchException
  • evalml.exceptions.EnsembleMissingPipelinesError
  • evalml.exceptions.PipelineScoreError
  • evalml.exceptions.DataCheckInitError
  • evalml.exceptions.NullsInColumnWarning
  • evalml.automl.AutoMLSearch
    • evalml.automl.AutoMLSearch.__init__
    • evalml.automl.AutoMLSearch.add_to_rankings
    • evalml.automl.AutoMLSearch.describe_pipeline
    • evalml.automl.AutoMLSearch.get_pipeline
    • evalml.automl.AutoMLSearch.load
    • evalml.automl.AutoMLSearch.save
    • evalml.automl.AutoMLSearch.score_pipelines
    • evalml.automl.AutoMLSearch.search
    • evalml.automl.AutoMLSearch.train_pipelines
  • evalml.automl.get_default_primary_search_objective
  • evalml.automl.make_data_splitter
  • evalml.automl.automl_algorithm.AutoMLAlgorithm
  • evalml.automl.automl_algorithm.IterativeAlgorithm
  • evalml.automl.callbacks.silent_error_callback
  • evalml.automl.callbacks.log_error_callback
  • evalml.automl.callbacks.raise_error_callback
  • evalml.automl.callbacks.log_and_save_error_callback
  • evalml.automl.callbacks.raise_and_save_error_callback
  • evalml.pipelines.PipelineBase
  • evalml.pipelines.ClassificationPipeline
  • evalml.pipelines.BinaryClassificationPipeline
  • evalml.pipelines.MulticlassClassificationPipeline
  • evalml.pipelines.RegressionPipeline
  • evalml.pipelines.TimeSeriesClassificationPipeline
  • evalml.pipelines.TimeSeriesBinaryClassificationPipeline
  • evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
  • evalml.pipelines.TimeSeriesRegressionPipeline
  • evalml.pipelines.BaselineBinaryPipeline
  • evalml.pipelines.BaselineMulticlassPipeline
  • evalml.pipelines.ModeBaselineBinaryPipeline
  • evalml.pipelines.ModeBaselineMulticlassPipeline
  • evalml.pipelines.BaselineRegressionPipeline
  • evalml.pipelines.MeanBaselineRegressionPipeline
  • evalml.pipelines.TimeSeriesBaselineRegressionPipeline
  • evalml.pipelines.utils.make_pipeline
  • evalml.pipelines.utils.make_pipeline_from_components
  • evalml.pipelines.utils.generate_pipeline_code
  • evalml.pipelines.components.ComponentBase
  • evalml.pipelines.components.Transformer
  • evalml.pipelines.components.Estimator
  • evalml.pipelines.components.utils.allowed_model_families
  • evalml.pipelines.components.utils.get_estimators
  • evalml.pipelines.components.utils.generate_component_code
  • evalml.pipelines.components.DropColumns
  • evalml.pipelines.components.SelectColumns
  • evalml.pipelines.components.OneHotEncoder
  • evalml.pipelines.components.TargetEncoder
  • evalml.pipelines.components.PerColumnImputer
  • evalml.pipelines.components.Imputer
  • evalml.pipelines.components.SimpleImputer
  • evalml.pipelines.components.StandardScaler
  • evalml.pipelines.components.RFRegressorSelectFromModel
  • evalml.pipelines.components.RFClassifierSelectFromModel
  • evalml.pipelines.components.DropNullColumns
  • evalml.pipelines.components.DateTimeFeaturizer
  • evalml.pipelines.components.TextFeaturizer
  • evalml.pipelines.components.DelayedFeatureTransformer
  • evalml.pipelines.components.DFSTransformer
  • evalml.pipelines.components.CatBoostClassifier
  • evalml.pipelines.components.ElasticNetClassifier
  • evalml.pipelines.components.ExtraTreesClassifier
  • evalml.pipelines.components.RandomForestClassifier
  • evalml.pipelines.components.LightGBMClassifier
  • evalml.pipelines.components.LogisticRegressionClassifier
  • evalml.pipelines.components.XGBoostClassifier
  • evalml.pipelines.components.BaselineClassifier
  • evalml.pipelines.components.StackedEnsembleClassifier
  • evalml.pipelines.components.DecisionTreeClassifier
  • evalml.pipelines.components.KNeighborsClassifier
  • evalml.pipelines.components.SVMClassifier
  • evalml.pipelines.components.CatBoostRegressor
  • evalml.pipelines.components.ElasticNetRegressor
  • evalml.pipelines.components.LinearRegressor
  • evalml.pipelines.components.ExtraTreesRegressor
  • evalml.pipelines.components.RandomForestRegressor
  • evalml.pipelines.components.XGBoostRegressor
  • evalml.pipelines.components.BaselineRegressor
  • evalml.pipelines.components.TimeSeriesBaselineEstimator
  • evalml.pipelines.components.StackedEnsembleRegressor
  • evalml.pipelines.components.DecisionTreeRegressor
  • evalml.pipelines.components.LightGBMRegressor
  • evalml.pipelines.components.SVMRegressor
  • evalml.model_understanding.confusion_matrix
  • evalml.model_understanding.normalize_confusion_matrix
  • evalml.model_understanding.precision_recall_curve
  • evalml.model_understanding.roc_curve
  • evalml.model_understanding.calculate_permutation_importance
  • evalml.model_understanding.binary_objective_vs_threshold
  • evalml.model_understanding.get_prediction_vs_actual_over_time_data
  • evalml.model_understanding.partial_dependence
  • evalml.model_understanding.get_prediction_vs_actual_data
  • evalml.model_understanding.get_linear_coefficients
  • evalml.model_understanding.t_sne
  • evalml.model_understanding.graph_precision_recall_curve
  • evalml.model_understanding.graph_roc_curve
  • evalml.model_understanding.graph_confusion_matrix
  • evalml.model_understanding.graph_permutation_importance
  • evalml.model_understanding.graph_binary_objective_vs_threshold
  • evalml.model_understanding.graph_prediction_vs_actual
  • evalml.model_understanding.graph_prediction_vs_actual_over_time
  • evalml.model_understanding.graph_partial_dependence
  • evalml.model_understanding.graph_t_sne
  • evalml.model_understanding.prediction_explanations.explain_predictions
  • evalml.model_understanding.prediction_explanations.explain_predictions_best_worst
  • evalml.objectives.ObjectiveBase
  • evalml.objectives.BinaryClassificationObjective
  • evalml.objectives.MulticlassClassificationObjective
  • evalml.objectives.RegressionObjective
  • evalml.objectives.FraudCost
  • evalml.objectives.LeadScoring
  • evalml.objectives.CostBenefitMatrix
  • evalml.objectives.AccuracyBinary
  • evalml.objectives.AccuracyMulticlass
  • evalml.objectives.AUC
  • evalml.objectives.AUCMacro
  • evalml.objectives.AUCMicro
  • evalml.objectives.AUCWeighted
  • evalml.objectives.BalancedAccuracyBinary
  • evalml.objectives.BalancedAccuracyMulticlass
  • evalml.objectives.F1
  • evalml.objectives.F1Micro
  • evalml.objectives.F1Macro
  • evalml.objectives.F1Weighted
  • evalml.objectives.LogLossBinary
  • evalml.objectives.LogLossMulticlass
  • evalml.objectives.MCCBinary
  • evalml.objectives.MCCMulticlass
  • evalml.objectives.Precision
  • evalml.objectives.PrecisionMicro
  • evalml.objectives.PrecisionMacro
  • evalml.objectives.PrecisionWeighted
  • evalml.objectives.Recall
  • evalml.objectives.RecallMicro
  • evalml.objectives.RecallMacro
  • evalml.objectives.RecallWeighted
  • evalml.objectives.R2
  • evalml.objectives.MAE
  • evalml.objectives.MAPE
  • evalml.objectives.MSE
  • evalml.objectives.MeanSquaredLogError
  • evalml.objectives.MedianAE
  • evalml.objectives.MaxError
  • evalml.objectives.ExpVariance
  • evalml.objectives.RootMeanSquaredError
  • evalml.objectives.RootMeanSquaredLogError
  • evalml.objectives.get_all_objective_names
  • evalml.objectives.get_core_objectives
  • evalml.objectives.get_core_objective_names
  • evalml.objectives.get_non_core_objectives
  • evalml.objectives.get_objective
  • evalml.problem_types.handle_problem_types
  • evalml.problem_types.detect_problem_type
  • evalml.problem_types.ProblemTypes
  • evalml.model_family.handle_model_family
  • evalml.model_family.ModelFamily
  • evalml.tuners.Tuner
  • evalml.tuners.SKOptTuner
  • evalml.tuners.GridSearchTuner
  • evalml.tuners.RandomSearchTuner
  • evalml.data_checks.DataCheck
  • evalml.data_checks.InvalidTargetDataCheck
  • evalml.data_checks.HighlyNullDataCheck
  • evalml.data_checks.IDColumnsDataCheck
  • evalml.data_checks.TargetLeakageDataCheck
  • evalml.data_checks.OutliersDataCheck
  • evalml.data_checks.NoVarianceDataCheck
  • evalml.data_checks.ClassImbalanceDataCheck
  • evalml.data_checks.MulticollinearityDataCheck
  • evalml.data_checks.DataChecks
  • evalml.data_checks.DefaultDataChecks
  • evalml.data_checks.DataCheckMessage
  • evalml.data_checks.DataCheckError
  • evalml.data_checks.DataCheckWarning
  • evalml.data_checks.DataCheckMessageType
  • evalml.data_checks.DataCheckMessageCode
  • evalml.utils.import_or_raise
  • evalml.utils.convert_to_seconds
  • evalml.utils.get_random_state
  • evalml.utils.get_random_seed
  • evalml.utils.pad_with_nans
  • evalml.utils.drop_rows_with_nans
  • evalml.utils.infer_feature_types
  • evalml.utils.save_plot
  • evalml.utils.is_all_numeric
  • evalml.utils.get_importable_subclasses

evalml.automl.AutoMLSearch.search¶

AutoMLSearch.search(data_checks='auto', show_iteration_plot=True)[source]¶

Find the best pipeline for the data set.

Parameters
  • data_checks (DataChecks, list(Datacheck), str, None) – A collection of data checks to run before automl search. If data checks produce any errors, an exception will be thrown before the search begins. If “disabled” or None, no data checks will be done. If set to “auto”, DefaultDataChecks will be done. Default value is set to “auto”.

  • feature_types (list, optional) – list of feature types, either numerical or categorical. Categorical features will automatically be encoded

  • show_iteration_plot (boolean, True) – Shows an iteration vs. score plot in Jupyter notebook. Disabled by default in non-Jupyter enviroments.

evalml.automl.AutoMLSearch.score_pipelines evalml.automl.AutoMLSearch.train_pipelines
Alteryx Open Source
GitHub Twitter

Copyright